M. Richwan, Non-Shortest Paths Route Choice Model
Based on F uzzy Preference Relations
Jurnal Perencanagn Wilayah dan Kota, Vol | 4, No.2/0uli 2003, him 69-81

NON-SHORTEST PATHS ROUTE CHOICE MODEL
BASED ON FUZZY PREFERENCE RELATIONS

M. Ridwan
RWTH Aachen
mridwan@web, de

ABSTRACT

This paper presents a new methodology for route based on Juzzy preference
relations. The core of the model is FiPV (fuzzy-individuelle Praeferenzen von
Verkehrsteilnehmern or Juzzy traveler preferences), that is an adjustment of
Orlovsky’s fuzzy choice Junction for travel decisions. T, he proposed model is
the first application of fuzzy individual Cnrejérence—based) choice in travel

cannot always follow perfect maximization principle. We Jormulate therefore
a model that also iakes into account the travelers with nom-perfect-

I. BACKGROUND

Route choice is an essential part of traffic assignment model. Traditional
assignment, in which all travelers are assumed to follow the shortest-travel-
time or least-cost path, is unrealistic since decisions to choose the route are
based on perceived travel times or costs, which may vary across individual
travelers. Moreover some travelers perhaps do not know or judge incorrectly
the shortest-travel-time or least-cost path, or choose a path for reasons not
captured by the time and cost functions. Random error has been addressed in
conventional approaches to accommodate this difference among travelers. It is
evidenced by observations that stochastic assignment models provide a more
realistic description of actual trave] behavior than deterministic assignment
models. The question is, however, can route choice behavior of the travellers
be captured merely by stochasticity of the mode]?

Very interesting research findings have been reported by Golledge (1997a).
There is a clear indication that travel time and cost do not always dominate
the route selection process. Experiments by Ramming (2002) in Boston
prompted that a majority of travelers fajl to minimize travel time or distance.

69



Only about a third of the drivers in the Boston case study chose the least-
travel-time path. Other experiment in Lexington evidenced that the actual
travel path is often quite different from the shortest path. Few travelers took
the same path as the shortest path; some have only minor deviation:; and most
travelers have major deviation from the shortest path (Jan et al., 2000). These
could have important implications to the future development of route choice
models. The important aspect raised here is: shortest or least-travel-time path
the criteria used in travel behavior models are real and relevant, i.e. useful for
explaining human travel choice behavior, or are only artifacts useful for
obtaining normative statistical or mathematical solutions? Golledge (1997b)
obviously showed that travelers are not shortest-path or least-time decision
makers.

Another problem is: the most existing route choice models are random utility
models with perfect rational assumption that all feasible paths are available
for individuals. More recently, the new functional specifications of route
choice models and explicit modeling of path choice set formation have been
- addressed. It contrast to the case where the traveler is objectively rational and
- makes a decision which is. objectively optimum, there can be numerous rules
and patterns of decision-making when the decision maker is bounded rational
(cf. Simon, 1955; Conlisk, 1996; Mahmassani & Jou, 1998).

Further, static network equilibrium models are not suitable for analyzing and
evaluating dynamic transportation systems which need the capability to solve
problems in real time (Ran & Boyce, 1996). They are not suitable for time-
dependent or dynamic assignment, especially because equilibrium is only
realistie if demand and supply characteristics can be safely assumed constant
over a reference period of sufficient length with respect to the journey times
of the system. Since there are always changes in supply, demand and traffic
propagation, in combination with the stochasticity of all the involved
parameters, makes the conception of equilibrium debatable (Peetya &
Ziliaskopoulos, 2001). Dynamic assignments models are also known as non-
equilibrium models (Cascetta, 2001),

The results of a recent study in Japan supported the arguments above by
showing that network flow does not necessarily converge to Wardrop’s user
equilibrium (Nakayama et al., 2000). A number of traffic assignment models
developed in the recent years as models in their own right, rather than as a
means of exploring equilibrium (cf. Watling, 1999). This category of traffic
assignment models arises from a belief that the traditional equilibrium
approaches are fundamentally insufficient. The assumption of long-term
convergence to equilibrium is therefore no more as a central theme of these
research activities. The researchers today work more intensively on the
specification of complex models of behavior and traffic movement. New
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insights can be gained about network behavior by examining the travelers’
behaviors and cognitive processes undelying them in detail.

The original motivation for the development of a fuzzy preference based route
choice model was to more realistically represent traveler’s decision making.
There has been substantial research in cognitive psychology showing that
fuzzy sets are good representation for linguistic variables. The use of fuzzy
tools in studying individual traveler behavior opens up an opportunity to
consider the extent to which there are representation methods that
complement existing transport modeling approaches. Driver’s perception of
route attributes are inaccurate, erroncous or inexact due to uncertainty. There
are two main sources for this uncertainty, namely: randomness and vagueness.
Randomness relates to uncertainty due to the non-deterministic nature of the
problem. Vagueness, however, mainly relates to the way driver perceive
information due to both intrinsic and information vagueness, and the fact that
the drivers rarely have exact information. Randomness can be treated with a
probability theory and vagueness can be handled with a theory of fuzzy set
(Zadeh, 1965; Zimmermann, 1996). . . ‘

Research in the field of soft computing has been exploring the application of
fuzzy set theory as a framework within which many transportation problems
can be studies. While several researchers have demonstrated the applicability
of fuzzy logic to traffic control and management tasks (Zimmermann, 1999),
application to traffic modeling in itself has remained a relatively unexplored
topic. See also Hoogendoorn et al. (1998) and Teodorovic (1999) for
comprehensive review, or Ridwan (2002) for review on route choice.

Most of the models found in the literature employ perfect maximization
principle. If the travelers are not utility-maximizers, then such models have a
less meaning. In this research we propose a model that represents decision
structure in route choice, which does not only rely on optimizattion criteria
such as shortest path and least time, but applies fuzzy preference relations to
yield the actual choice of the travelers. We call the model based on
Orlovsky’s fuzzy choice function FiPV (Fuzzy-individuelle Praeferenzen von
Verkehrsteilnehmern or fuzzy traveler preferences) which is concerned with
discrete decision problems provided that pairwise comparisons between route
alternatives are gvailable with inherent subjectivity and imprecision of human
thinking. FiPV is suitable to represent individual travelers at disaggregate
level, e.g. in micro-simulation like TRANSIMS, more than random utifity
models, since the process of choosing the route in different traffic situations
can be be observed, modeled and then manipulated at individaal level, not
aggregate level,
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From theoretical point of view, modern economics could be restated in terms
of people’s preferences alone, without any reference to the concept of utility
at alt (Harsanyi, 1996). Economists do make use of the utility concept merely
as a convenient mathematical representation of people’s preferences. Since
preferred choices will change with individual’s historical experience, the new
methodology, e.g. case-based decision theory (Gilboa & Schmeidler, 1999),
tends to be both a general language for thinking about the components of
choice, and a theory of how preferences are formed over time. Therefore,
decision making process is about understanding the preferences and
expanding the set of alternatives (Buchanan et al., 1998). FiPV has been
derived from these theoretical foundations and considerations described
above. Its structure consists of 4 basic elements:

- The set of available travel choice alternatives (i.e. routes/links/paths} of
which travelers are aware,

— Fuzzy pairwise comparisons between alternatives obtained from empirical
observation presented as matrix elements Hr(x.x) of Orlovsky’s choice
function, _ :

— Inductive rule-based as analytical tool for forming preferences, updating

" process of the actual preferences, and representing context dependence’
preferences, - ' '

- Simple algorithm to solve those constructed Orlovsky’s choice functions.

We will discuss at the conference some aspects of FiPV route choice model
and its plausibility. We follow the view of fuzzy preference modeling
community as classified by Bisdorff (2000).

I1. STliUCTURE OF THE FiPV MODEL

Travelers commonly trade-off travel time to select routes that are more direct,
beautiful landscape, free (non-toll road) or safer alternative. Route selection
decisions of traveler often depend on what other travelers are doing. Route
choice can depend on congestion caused by the aggregated behavior of others.
This may cause a standstill, since nobody can choose a route because no one
knows what everybody else will do. But travel decision (route choice) must be
made. We skip themes, e.g. set of alternatives, network notations, effect of
familiarity and travelers’ knowledge of the transportation network, inductive
reasoning, information processing and other technical details. We will present
these aspects in our full paper.

Eigennetwork. Let us introduce a concept of Eigennetzwerk (eigennetwork).
Travelers cannot have a- perfect knowledge of the network, because of their
limited cognitive capacity. A cognitive capacity of a traveler » is therefore not
unbounded. Accordingly, in the traveler’s mental map can be detected a
unique network called eigennetwork, which contains the set of his own
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cognitive nodes and links. This eigennetwork is extremely situational, i.e.
depending on the actual network performance, and denoted by G,=(N,,4,.), G,
c G.

Three-stage decision making. A three-stage decision making process in
selecting routes on networks will be proposed, namely: network recognition,
selection the global decision nodes, and final decision activity within smallest
decision segment. This current paper is more concerned with the third stage,
specifically, the application of FiPV in decision activity to choose the routes.
The travelers are not assumed to compare the utilities among allowable route
alternatives and then to select a final route of the highest utility, but rather
they are assumed to be using their own fuzzy preferences in selecting a path.

Desision nodes. To address the modeling of en route guidance acquisition and
path switching, a subset BcN of nodes will be described as decision nodes.

Figure 1
Structure of travel path choice within smallest decision segment m
(Routenentscheidungsabschnitt}

b, ¢ are decision nodes

e is a big node, not absolutely a centroid
d is a node but not a decision node
d can be located at link b-¢

&

Decision segment. Network recognition sets up the eigennetwork G, of which
the traveler selects, in his own capacity, the possible alternative routes for a
travel from origin r to destination s. This can be formed through segmentation
of eigennetwork in M sections of mental map called decision segment
(Routenentscheidungsabschnitt), i.e. a sub-eigennetwork G =(Numdmn), Grnc
Gy,
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Choice of the alternatives. The decision making process within a decision
segment is modeled as a decision problem that can be solved with FipPV
algorithm. Two phases are considered, namely: phase I includes the possible
alternatives at node b and phase 2 consists of possible alternatives at node c.
Let first discuss about FiPV.

1. FUZZY CHOICE FUNCTION IiPV)

Mathematical model. Fuzzy sets adopted in this paper is based on fuzzy
individual choice in discrete decision space (cf. Orlovsky, 1978;
Zimmermann, 1987) named FiPV. Modeling preference relation in simple
terms means expressing preferences for all possible pairs (X, y) of alternatives
by providing answer to questions like: is alternative x not inferior to
alternative y? (Fodor et al., 1998).binary relations of alternatives R(A’) can be
expressed by matrices with the properties: (a) the elements of the set A is 2
representation of available choice alternatives; (b) matrix element Hrlx,x) is a
membership grade which represents pairwise comparison between alternatives
A; and alternative 4; by the individuals subject to the specified attributes or
decision criteria. If a'fuzzy pairwise comparison matrix exists, the choice of
the best alternative can be solved with a standard procedure poposed by
Orlovsky (1978). Ranking of all alternatives and more practical choice
procedure are provided by Ridwan (2000). By definition, FiPV is a choice
based on Halx,x;) or

FiPV =choice procedure based on (%, %) (1

Application, We adopt a stochastic network model normally used in the
transportation literature (Sheffi, 1985; Ran & Boyce, 1996; Ridwan, 2002).
We have

NO=2x,0=3 fror Va @)

Decision matrix. The FiPV function is represented by its preference structure
as showwn above. If the traveler prefers to choose a route over a decision
node c, then we can express the decision function as

FiPL2 (D =[b— cJ(5) + FiPY(f) Va,p,b,c,e 3)

Where [b 2 c] (9) is a well-defined selected path whenever traveler » is
entering the decision segment over the decision node b at time r The
individual decision making process within the decision segment m (see Figure
1), -we skip the details- as shown in the example, can be solved with equation

(1.
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Inductive rule-based. In a transportation system, travelers experiment with
alternative routes, listen to traffic information on radios, etc., and compare
experiences with other travelers. Based on this evaluation, travelers settle on
routes which are most preferred. This process can be captured in the FiPV
model as inductive rule-based, which can be characterized by

If x then 1, >>> and g, <<<

)

Ify then 14, >>> and g, <<<

where x and yrepresent performance changes on the system or different
circumstances of the traveler. The effects of kand yare reciprocal. If
K implies the value of x> y is increased, i.e. s, becomes greater (>>>);
consequently the value of ¥ > x will be decreased, i.e. y, is growing less
(<<<), then ycauses the reverse. The p, and g, values formation is an
inductive process. These form a new decision matrix z(x;x;) in which x;=x
and x;= y. The new decision matrix may cause a new choice and the formation
of the matrix elements (X, x; continues.

IV. EXAMPLE

This example will demonstrate the FiPV gp(x,x)- choice function (1) that can
be manipulated at the laboratory or compared with the real decision in the
transportation system.

We present two examples to show the different between traveler who cannot
maximize his behavior and traveler who is able to maximize his behavior. The
maximizing is the behavior of individuals who optimize their travel criteria
such as shortest path or least time. Their behavior can be predicted
approximately with shortest path algorithm, minimizing impedance or
disutility (travel time, cost, fuzzy cost, etc.) or maximizing utility function.
However, the individual perceptions of perceived travel time are varied. In
contrast, the non-perfect-maximizing behavior cannot be predicted from a
general formulation like that. This kind of behavior must be observed
empirically, and the behavior patern subsequently studied. We show feedback
as preference formation and inductive rule-based as context dependence in the
following example.

Given crisp travel time data (no information about distribution, the travelers
only know about minimal and maximal travel times in uncongested network)
as follows:

- alternative 1: 18 minutes (normal), 40 minutes (congested)

~  alternative 2: 20 minutes {normal), 35 minutes (congested)
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- alternative 3: 25 minutes (normal), 30 minutes (congested)
— alternative 4: 16 minutes (normal), 40 minutes {congested)

4.1. Non-perfect-maximizing behavior
At decision point b

Favorite route

Stated response Preference formation (feedback)

1 2 3 4 o2 3 4
! 1,00 090 0,80 070" 1 1,00 090 0,80 080
2 0,60 1,00 0,30 0,40 2 0,60 1,00 030 0,40
3 0,70 0,50 1,00 0,20 3 0,70 0,50 1,00 0,20
4 0,80 0,10 0,40 1,00 4 0,80 0,10 0,40 1,00

> infransitive wND 1,00 0,70 0,80 0,70
—> to be chosen: alternative 1

Travel information: _ Traveler re-evaluates the
congestion on path b-e - Decision process (inductive)

‘ o2 03 4 1 2 3 4"

1 50°° 0,80 0,70 I 1,06 0,60 0,80 0,70
2 0,30 0,40 2 0,80 2050 0,40
3 1,00 0,20 3 0,70 0,20
4 0,80 0,10 0,40 1,00 4 0,80 1,00
uND 0,80 0,80 0,80 0,70 pND 0,80 0,10 0,40 1,00
- no decision = to be chosen: alternative 2

At decision point ¢

The traveler changes his mind

UND 0,90 1,00 ->tobe chosen: alternative 3 or path ¢-d-¢
Note: In this example we remove the condition Hr(XuX) + pip(,x,) =

If the traveler has a behavior that does not satisfy maximizing travel
objections (e.g. because of unfamiliarity, lexicographic choice, etc.), the
researcher may observe the behavior through fuzzy preference value Hrlxyx;)
in a decision situation with respect to which the traveler has made pairwise
comparisons between available alternatives ;i and J i his decision segment.
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The values are different from those of traveler who can maximize his travel
objectives. Suppose we got some values from a real observation like the first
matrix at the left that is obviously intransitive. Assume that the traveler will
choose the alternative 1 or path b-e, but this matrix is not easy to interpret. We
suggest therefore a feedback to form a transitive condition like the marix at
the right. The new FiPV matrix gives a better interpretation about the
traveler’s choice. Yet, when the pre-trip information announced that
congestion occurs on path b-¢, the traveler will start to revise his preference,
perhaps first with the result: no decision. After reevaluation he chooses
alternative 2 or path #-c-e. En route information or other condition like
incident can then affect the traveler to make another decision while he is on
the route segment b-c, e.g. to choose path ¢-d-¢ as shown above.

4.2. Pure rational utility-maximizer without information

We will show first a simple problem where traveler as a utility-maximizer has
to optimizze his travel objectives in uncongested network and then in
congested network without information. We see the fact that in the normal
(uncongested) network the chosen path is the least time. But we also see that
in congested route, the traveler behaves other than normal. The rational
traveler tries to seek a better alternative by guessing that the other route may
be not over capacity. The traveler do not know about the traffic condition
precisely, he only guesses and think about his habit or his current decision tha
could be reasonable to be revised, he want to make a new comparison of
possible alternatives. The process continues during the traffic jam. If he
finally finds the other route better than his current route, he will change the
route. The updating process consists of mere guessing. We will see the reality
how ‘in the congestion the actual best route (alternative 3 route b-c-d-e: 30
minutes) could not be found by the traveler. Conventional shortest path
methods if apply here will result a fundamental error.

Uncongested Congested
Stated response Preference updating (guessing)

1 2 3 4 1 2 3 4
I 1,00 0,90 090 0,80 1 1,00 0,80 0,70 090
2 0,80 1,00 0,80 0,70 2 090 1,00 0,70 0,80
3 0,70 0,60 1,00 0,60 3 0,90 0,60 1,00 1,00
4 090 0,80 1,00 1,00 4 0,90 0,70 0,60 1,00
uND 0,90 0,90 0,60 1,00 uND 0,80 0,10 0,90 0,60
- to be chosen: alternative 4 - to be chosen: alternative 2
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4.3. Rational utility-maximizer with information

can be found by the traveler with traffic information. Both travelers’
behaviors, perfect maximizing and non—perfect—maximizing, can be modeled
in a one form FiPV matrix. The zp(x,x;) values of the maximizing behavior
correspond directly to the impedance/disutility, i.e. identical with fuzzy cost
(Henn, 2002; 2000), but these fuzzy preference values of the non-perfect-
maximizing behavior do not.

Congested on the route b-¢ Cc‘mgested on the system

Light evaluation Total evaluation
1 2 3 4 1 2 3 4

1 . 0,90 0,80 1 1,00 0,80 0,9
2 0 L00 0,80 0,70 2 0,90 1,00 0,80
3 0,70 0,60 1,00 0,60 3 0,90 0,80, 1,00 1,00
4 0,90 080 1,00 1,00 409 0,70 060 1,00
UND 0,90 0,90 0,60 1,00 ~ HND 080 080 1,00 0,60
> to be chosen: alternative 4 - to be chosen: alternative 3

V. CONCLUSIONS

methodology needs to be validated against empirical observations. Whep this
test phase has been done, the model can be used as disaggregate
representation of the observed population as input to any micro-simulation
program to forecast travel demand. '

We introduce a concept of decision segment (Rouzenentschez'dungsabschnitt),

which consists of decision nodes that may be expanded as necessary. Decision
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preliminary concept that needs to be developed further. FiPV analyses the
decision problem within this decision segment as shown in Figure 1. The
example shows the model structure and the behavior distinction between two
types of travelers. The fact that travelers do not always follow the shortest
path or least travel time/cost can be explained in terms of the fuzzy choice
model. The values of fuzzy preference relations pr(x,x; reflect the individual
intterpretation of the choice situation that absolutely independent from general
principle of optimization or maximization. However, these can also handle
situation in which the travelers maximize their travel objectives. In contrast,
utility as overall criterion cannot always represent subjective criteria that may
also depend on decision context.

Inductive rule-based (equation 4) introduced in this paper helps the researcher
to obtain dynamic numerical vaiue of the membership function gip(x,x;} that
represents traveler’s perception update as a result of his adaptation process in
making travel decision. The structure of inductive rule-based is flexible so
that dynamic reactions of individual traveler to continual change on
transportation system performance and other factors influencing his travel
decision can, therefore, be modeled realistically. The example shows that as
rational utility-maximizer, traveler seems to have no possibilities in'choosing
the route. In other words, route choice models mainly developed on the basis
of the assumption as if travelers are utility-maximizers cannot really describe
behavior of all individuals under any circumstances. Parallel to the results in
decision theory, economics and psychology, it appears that time has come to
ask about the plausibility of alternative approach to extend the traditional
model.

As shown in the example, FiPV represents all types of travelers’ behavior and
offers possibilities in modeling route choice without shortest-path and least-
travel-time criteria.
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